
Portable & Wireless 1998 Page 1 1-2-98

Corporate Headquarters:
One Research Drive
Shelton, CT 06484

Phone: 1-203-925-1340

Portable and Wireless 1998

SBS Smart Battery Interface Guidelines
By Dan Friel and Mike Mattera

Abstract
The Smart Battery System (SBS), developed by a 10-member industry group, contains multiple specifications detailing a
complete power system for portable devices. A SBS Smart Battery is detailed in the System Management Bus (SMBus)
and Smart Battery Data (SBData) Specifications. Information regarding the general operational and interface guidelines
of SBS Smart Batteries in a system is found throughout these specifications. This paper addresses the four key areas
facing system designers wishing to incorporate SBS Smart Batteries into their devices, whether they are notebook
computers or other portable products.

The key areas are related to commonly asked questions regarding SBS Smart Batteries and SMBus communications. In
particular, these areas are only briefly discussed or explained in the appropriate SMBus and SBData Specifications but are
critical to insuring a fault-tolerant, robust Smart Battery System. These topics address communication faults and error
recovery, timing and calculations issues, and data accuracy definitions. These items are brought together here to assist the
system designer and to provide additional detail and explanation.

Contents
1. System Management Bus Collision Avoidance and Recovery

2. SMBus and Smart Battery Timeout and Clock Stretching Operation

3. Smart Battery Data Calculation Latency and Bus Busy Response

4. Smart Battery Data Accuracy and Granularity

Author Biographies
Dan Friel is the co-author of many of the SBS Specifications and the co-inventor of Duracell’s and PowerSmart’s Smart
Battery electronics. He is chairman of the SBS Implementers’ Forum Charger-Selector-Safety Working Group. Mr. Friel
is a founding employee of PowerSmart Inc. and was previously with Duracell’s Smart Battery Development Group for
four years. He holds a BSEE from Purdue University.

Mike Mattera is a founding member of the SBS Implementers’ Forum and has been active in the promotion and
advancement of the SBS specifications. After working 18 years for Duracell’s New Products and Technology Division,
Mr. Mattera is a founding member of PowerSmart Inc. He holds a BS in Marketing from Manhattan College.

Portable & Wireless 1998 Page 2 1-2-98

SBS Smart Battery Interface Guidelines

System Management Bus Collision Avoidance and Recovery

The SMBus is a derivative of the I2C or Inter-IC bus developed by Philips Semiconductor. The
differences between the SMBus and I2C are primarily logic level thresholds and similar electrical
parameters. The collision avoidance and recovery techniques, however, are identical. The bus is a true
multi-master wired-OR system if all the associated components correctly adhere to the specifications.
However, in some systems, a multi-master arrangement is not implemented, or not implemented
correctly, and there are issues with collision and recovery that must be addressed.

The I2C Specification details the approach used to prevent collision (arbitration) on a wired-OR
system: that is that the bus lines must be monitored by the device attempting to drive the bus. Any
output that does not coincide with the monitor input is therefore a potential collision and must follow
the rules of arbitration. For example, if a device is attempting to drive the bus with a logic HI yet this
device’s bus monitor input reads a logic LOW, then some other device is driving the bus and the first
device must completely release the bus (both lines.) More detail on device arbitration rules can be
found in the Philips Semiconductor publications ‘The I2C-bus and How to Use It.’

Another key point in preventing bus collisions is the ability to determine if the SMBus is idle and
available. This can be accomplished in two basic ways: by measuring the time the bus lines are both at
logic HI, or by watching for START and STOP conditions (primarily STOP conditions) on the bus
itself.

Both methods have issues, which must be considered during system design. First, the HI time
for the CLOCK and DATA bus lines is specified at 50 uSec but is not always observed by all system
components, particularly microcontrollers which may have interrupt routines. Secondly, if a collision or
communications fault occurs, a STOP condition may not be issued.

The advised method is therefore to generate a ‘bus reset’ whenever a collision is suspected or
some other communication fault occurs. The ‘bus reset’ will not only help avoid additional collisions
but will also allow the SMBus and all attached devices to correctly recover. This is also suggested
when conditions on the bus are unknown or could be corrupted, such as when the bus is first powered-
up, when a new device is attached or removed, or when a bus switch (as through a Smart Battery
Selector) has occurred.

A ‘bus reset’ is simply a START condition followed by a minimum 5 uSec delay followed
immediately by a STOP condition and then an idle bus (both lines HI) for 50 uSec minimum. Any
device that is already in a communication will accept the START condition as a possible Repeated-
START while the associated STOP will then end the communication and return the bus to an idle
condition. It is suggested, however, that this only be attempted when it is believed that the bus is
already idle but that all devices may not be aware that the bus is idle. This ‘bus reset’ procedure will
insure that all devices see a valid START and STOP condition and that the bus is again idle.

PowerSmart ICs and modules use the presence of a STOP condition to determine if the SMBus
is idle. It is suggested that a ‘bus reset’ procedure be used whenever a Smart Battery is attached or
removed from a system.

Portable & Wireless 1998 Page 3 1-2-98

SMBus and Smart Battery Timeout and Clock Stretching Operation

The Smart Battery Data Specification, originally co-written by Duracell and Intel, details the
operation of a Smart Battery which reports data over the SMBus to a Host device requesting the data.
The System Management Bus Specification indicates how the data transfer is to occur, which protocols
to use, and how errors should be handled.

One particular aspect of the SMBus that is different from the base I2C specification is the area of
Timeouts and Clock Delays. There are three such values listed in the specification, a general Timeout
value for devices (TTIMEOUT); one specifically for slave devices (TLOW:SEXT); and one specifically for
master devices (TLOW:MEXT). All deal with delays in the timing of the CLOCK signal.

Each of these values has a specific use and meaning for SMBus devices although originally they
were developed for the Smart Battery in particular. Due to the nature of the Smart Battery itself and
the need to conserve power and perform continuous calculations, these timeout values were created to
assist the Smart Battery SMBus device. Other devices with similar constraints may also employ these
values without penalty.

The TTIMEOUT value is really a signaling mechanism which is used to cause the requesting device
(Host Master) to end the communication transfer and generate a STOP condition. It is commonly used
by a Slave device when the Slave has decided it cannot complete the communication request and must
end the transfer prematurely. Normally, as per the SMBus and I2C specifications, the Slave device
would simply generate a NACK (Not Acknowledge) at the next opportunity. However, if the Slave
was in the process of sending data to the Master, then the Slave does not control the ACK since the
ACK is being used by the Master to confirm receipt of the data from the Slave. (This is from the
SMBus Read Word and Read Block protocols.) In this case (when the ACK is not available to the
Slave) then the Slave may cause a TTIMEOUT condition by holding the CLOCK line LOW for a minimum
of 25 mSec and a maximum of 35 mSec. The Master must recognize this TTIMEOUT condition and after
the CLOCK line is released by the Slave, the Master must generate a STOP condition to formally end
the communication transfer. TTIMEOUT must occur over one complete CLOCK interval, not successive
CLOCK intervals.

The TLOW:SEXT time is the maximum time a Slave device may extend or hold the CLOCK line
LOW before a TTIMEOUT would occur. This delay is to allow the Slave device time to perform a
calculation to obtain the requested data. Typically TLOW:SEXT occurs all within one CLOCK interval and
after the last Slave address in a Read transaction, but it is possible to occur over multiple CLOCK
intervals and therefore is cumulative.

The TTIMEOUT value and TLOW:SEXT values are intrinsically tied and basically indicate the same
timing value. The maximum for TLOW:SEXT (25 mSec) is the minimum for TTIMEOUT. The TLOW:SEXT and
TTIMEOUT values share a common point but care must be taken not to design device timing too close to
these endpoints. A typical minimum for TTIMEOUT is 27 mSec and a typical maximum for TLOW:SEXT is 23
mSec. This provides a few mSec buffer to make recognition of the timing values easier.

The TLOW:MEXT time is identical in purpose to the TLOW:SEXT time but shorter and specifically
aimed at Master devices in an effort to minimize bus delays. As with TLOW:SEXT, it is the minimum time
that a Master may hold the CLOCK line before a Slave may consider the Master to have failed during
the communication transfer. In essence, a TLOW:MEXT beyond 10 mSec is similar to a TTIMEOUT for a
Slave device. It indicates that the communication transfer is invalid or a fault has occurred and that the
Slave should release any control over the SMBus lines and wait for a new transfer.

Portable & Wireless 1998 Page 4 1-2-98

Smart Battery Data Calculation Latency and Bus Busy Response

The Smart Battery Data (SBData) Specification details the various data values which a Smart
Battery is expected to return to a Host device which may request such data points. These include the
battery voltage, current, and temperature values but also much more useful information which can be
used to provide better system power management, not only for the battery itself but for other
components in the system.

In the process of calculating these SBData values, the Smart Battery requires some processing
time to perform the requested calculations. Additionally, the Smart Battery needs time to update
internal registers with values related to calculations for state-of-charge and similar items. These two
requirements are the cause of ‘latency’ and ‘bus busy’ factors common with Smart Batteries.

Regarding ‘latency,’ there are specific limits to the time a Smart Battery may take to report back
the data requested. The SMBus Read Word and Read Block protocols are complete communication
transfer protocols where the requested and the returned data are contained in the same communication.
In order to provide calculation time for the Smart Battery, the delay must be integrated into the actual
communications protocols. This is the purpose of CLOCK stretching and the use of the TLOW:SEXT

timing parameter. This parameter allows up to 25 mSec for a Slave device to calculate a data value
during a Read Word or Read Block transfer. This is commonly referred to as the ‘latency’ of response
of the Smart Battery.

Typically this ‘latency’ is minimal, requiring only a few mSec to as much as 10 mSec. However
some SBData values which operate on Host specified data, such as AtRate functions, may take up to 20
mSec. The AtRateTimeToEmpty is a good example: The Host Master first uses a Write Word
protocol to send the Smart Battery an AtRate discharge value in mA or mW. Next, the Host Master
requests via a Read Word protocol the Smart Battery’s calculated AtRateTimeToEmpty value. The
Smart Battery must first use the previously written AtRate value, make any needed conversions for mA
or mW, check the present state-of-charge information, calculate a new run time based on the AtRate
value, and then report the requested value. This whole process may require quite a few instruction
cycles of the processor inside the Smart Battery.

Another fact of Smart Battery operation is the need to update internal registers to compensate
for changes in state-of-charge. As the Smart Battery is operating it continually monitors the voltage,
current, and temperature of the cells in the particular battery. These measurements are then used with
other pre-defined and learned values to calculate an internal state-of-charge value. (Other values are
also calculated but this is the simplified example.)

All these internal calculations again require a particular amount of processor time to be
performed. The time required typically prevents the internal processor from handling other functions,
such as SBData requests over the SMBus, while updating the state-of-charge. This is the cause of the
‘bus busy’ condition common in Smart Batteries. For some interval of time there is a portion of that
time which is used for these internal calculations and therefore SBData requests are not processed.

During these ‘bus busy’ intervals, the Smart Battery must still Acknowledge (ACK) its own
address but it may choose to generate a Not Acknowledge (NACK) at the Command Code or any byte
following the first address ACK. Similarly, the Smart Battery may instead decide to generate a Timeout
condition by holding the CLOCK line LOW for greater than the TTIMEOUT period of 25 mSec. Either
method is acceptable and in both cases the Host Master device is required to generate a valid STOP
condition to terminate the request. Since the ‘bus busy’ interval is periodic, it is best for a Host Master
to not make SBData requests at a simple periodic rate.

Portable & Wireless 1998 Page 5 1-2-98

Smart Battery Data Accuracy and Granularity

Within the Smart Battery Data Specification there are a number of data values which have
‘Accuracy’ and ‘Granularity’ specifications associated with the particular data value. These indicate the
relative ‘goodness’ of the data and the minimum which can be expected.

The granularity value given for each of the SBData functions is simply the minimum amount that
value should change from one reading to the next. For example, the Current data value returns the
amount of current measured by the Smart Battery. If a very slowly increasing current were applied to
the Smart Battery, the Current function may return these values: 495 mA, 500 mA, and then 505 mA.
The granularity is therefore 5 mA since that is the minimum amount of change between each reading.

The granularity is specified as a function of some fixed value represented elsewhere, such as the
original design voltage or design capacity of the Smart Battery. This allows it to be correctly sized for a
particular Smart Battery.

Granularity is specified to provide some consistency in the SBData values returned by batteries
from different manufacturers. As an example, if granularity were not specified some Smart Battery
manufacturers could make very inaccurate current measurements and hide the inaccuracies by only
reporting current in 500 mA increments. Without a granularity specification this would still be legal,
although obviously not very useful, for a power management system. Similarly, if the granularity value
were not specified, the RunTimeToEmpty value could be reported in 30-minute increments and could
simply drop from 30 minutes to zero without warning, again not very useful.

As an example of calculating a granularity, the SBData Voltage function specifies 0.2% of the
Smart Battery’s original pack voltage, which is listed in the SBData DesignVoltage function. In a
Smart Battery with a DesignVoltage of 10.8V, the granularity for the Voltage data would be at least:

10800 mV x 0.002 = 21.6 mV (where 0.002 is 0.2%)

Note that all the granularity specifications are minimum values and higher granularity, thus a
lower value between increments, is encouraged.

Although granularity specifies the increments in which the data will change, accuracy specifies
how close to an actual value the data will really be. For example, in the SBData Specification, Voltage
accuracy is specified as a percentage of the fixed design voltage, or +/- 1.0%. Again, for a 10.8V Smart
Battery, this means that the value reported will be within +/- 108 mV. Therefore, accuracy defines a
boundary and granularity defines the increment of movement which can be differentiated within the
boundary.

In most cases where accuracy is critical, the range is -0/+X, where X is the specified accuracy.
This is true for many SBData functions such as RunTimeToEmpty and similar functions whereby the
value reported already incorporates the accuracy information so that the data is never misrepresented.

Accuracy is specified to prevent inaccurate information transmission from low quality and
unreliable Smart Battery packs to end-user devices. The accuracy values specified in the SBData
Specification represent a minimum performance standard. All PowerSmart Inc. products meet or
exceed SBData granularity requirements and exceed all accuracy values specified.

